metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Oxo-4,5-diazafluoren-4-ium tetrachloridoaurate(III)-4.5-diazafluoren-9one (1/1)

Nasser Safari,^a Vahid Amani,^a Behrouz Notash^a and Seik Weng Ng^b*

^aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 19 February 2009; accepted 24 February 2009

Key indicators: single-crystal X-ray study; T = 118 K; mean σ (C–C) = 0.005 Å; R factor = 0.025; wR factor = 0.067; data-to-parameter ratio = 16.7.

The Au^{III} atom in the title compound, $(C_{11}H_7N_2O)[AuCl_4]$. C₁₁H₆N₂O, is in a nearly square-planar environment defined by four Cl atoms. The protonated 9-oxo-4.5-diazafluoren-4ium cation forms an $N-H \cdots N$ hydrogen bond with the neutral 4,5-diazafluoren-9-one molecule.

Related literature

For other 9-oxo-4,5-diazafluoren-4-ium tetrachloridometallates, see: Kulkarni et al. (2003); Menon et al. (1994); Ravikumar et al. (1995); Ravikumar & Lakshmi (1994); Zhang et al. (2003). For the synthesis of 4,5-diazafluoren-9-one, see: Henderson et al. (1984).

Experimental

Crystal data $(C_{11}H_7N_2O)[AuCl_4]\cdot C_{11}H_6N_2O$ $M_r = 704.13$ Triclinic. $P\overline{1}$ a = 7.1035 (1) Åb = 12.6513 (2) Å c = 13.2366 (2) Å $\alpha = 73.285 (1)^{\circ}$ $\beta = 78.410 (1)^{\circ}$

 $\nu = 88.375 \ (1)^{\circ}$ V = 1115.51 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 7.10 \text{ mm}^{-1}$ T = 118 K $0.20 \times 0.10 \times 0.10 \ \mathrm{mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.331, T_{\max} = 0.537$ (expected range = 0.303-0.491)

Refinement

1

$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of
$wR(F^2) = 0.067$	independent and constrained
S = 1.04	refinement
5044 reflections	$\Delta \rho_{\rm max} = 3.05 \text{ e} \text{ Å}^{-3}$
302 parameters	$\Delta \rho_{\rm min} = -1.27 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Selected bond lengths (Å).

Au1-Cl1	2.2720 (8)	Au1-Cl3	2.2864 (8)
Au1-Cl2	2.2882 (8)	Au1-Cl4	2.2872 (8)

9343 measured reflections

 $R_{\rm int} = 0.016$

5044 independent reflections

4829 reflections with $I > 2\sigma(I)$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots N3$	0.89 (1)	1.88 (1)	2.762 (4)	168 (4)

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2184).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Henderson, L. J., Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876-5879.
- Kulkarni, P., Padhye, S. & Sinn, E. (2003). Inorg. Chem. Commun. 6, 1129-1132
- Menon, S., Balagopalakrishna, C., Rajasekharan, M. V. & Ramakrishna, B. L. (1994). Inorg. Chem. 33, 950-954.
- Ravikumar, K. & Lakshmi, N. V. (1994). Z. Kristallogr. 209, 56-57.
- Ravikumar, K., Venkata Lakshmi, N., Swamy, G. Y. S. K. & Chandra Mohan, K. (1995). Acta Cryst. C51, 1556-1558.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2009). publCIF. In preparation.
- Zhang, R.-L., Liu, H.-M., Zhao, J.-S., Gu, A.-P., He, S.-Y., Liu, J.-N. & Shi, Q.-Z. (2003). Chin. J. Inorg. Chem. 19, 722-726.

supplementary materials

Acta Cryst. (2009). E65, m344 [doi:10.1107/S1600536809006734]

9-Oxo-4,5-diazafluoren-4-ium tetrachloridoaurate(III)-4,5-diazafluoren-9-one (1/1)

N. Safari, V. Amani, B. Notash and S. W. Ng

Experimental

Chloroauric acid trihydrate (0.25 g, 0.73 mmol) dissolved in acetonitrile (5 ml) was mixed with 4,5-diazafluoren-9-one (Henderson *et al.*, 1984) (0.13 g, 0.73 mmol) dissolved in methanol (5 ml). The yellow solution was set aside for the growth of crystals, which appeared after two weeks (yield 70%; m.p. 483 K).

Refinement

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The N-bound H atom was located in a difference Fourier map and refined isotropically, with a distance restraint of N—H = 0.88 (1) Å. The crystal diffracted strongly owing to the extremely heavy metal atom; however, its presence introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. The final difference Fourier map had a highest peak at 1.00 Å and a deepest hole at 1.00 Å from Au1 atom.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level. The dashed line denotes hydrogen bond.

9-Oxo-4,5-diazafluoren-4-ium tetrachloridoaurate(III)-4,5-diazafluoren-9-one (1/1)

Crystal data	
$(C_{11}H_7N_2O)[AuCl_4]\cdot C_{11}H_6N_2O$	Z = 2
$M_r = 704.13$	$F_{000} = 672$
Triclinic, PT	$D_{\rm x} = 2.096 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.1035(1) Å	Cell parameters from 7741 reflections
b = 12.6513 (2) Å	$\theta = 2.7 - 28.4^{\circ}$
c = 13.2366 (2) Å	$\mu = 7.10 \text{ mm}^{-1}$
$\alpha = 73.285 \ (1)^{\circ}$	T = 118 K
$\beta = 78.410 \ (1)^{\circ}$	Block, yellow
$\gamma = 88.375 \ (1)^{\circ}$	$0.20\times0.10\times0.10~mm$
V = 1115.51 (3) Å ³	

Data collection

Bruker APEXII CCD diffractometer	5044 independent reflections
Radiation source: fine-focus sealed tube	4829 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
T = 118 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.331, T_{\max} = 0.537$	$k = -16 \rightarrow 16$
9343 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.1124P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
5044 reflections	$\Delta \rho_{max} = 3.05 \text{ e } \text{\AA}^{-3}$
302 parameters	$\Delta \rho_{min} = -1.27 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Au1	0.298203 (14)	0.304054 (8)	0.394619 (8)	0.01445 (6)
Cl1	0.28189 (13)	0.32712 (7)	0.56013 (7)	0.02448 (17)
Cl2	0.31382 (13)	0.49176 (6)	0.32181 (7)	0.02314 (17)
C13	0.31133 (12)	0.28082 (6)	0.22834 (6)	0.01975 (16)
Cl4	0.28622 (13)	0.11653 (6)	0.46788 (7)	0.02373 (17)
01	0.1850 (4)	0.3950 (2)	0.7782 (2)	0.0258 (5)
O2	0.3590 (4)	1.22613 (19)	0.9995 (2)	0.0239 (5)
N1	0.2353 (4)	0.7025 (2)	0.9069 (2)	0.0163 (5)
H1	0.247 (6)	0.7760 (9)	0.885 (3)	0.029 (11)*
N2	0.2032 (4)	0.7897 (2)	0.6684 (2)	0.0187 (5)
N3	0.3136 (4)	0.9265 (2)	0.8548 (2)	0.0156 (5)
N4	0.1257 (4)	0.8534 (2)	1.0949 (2)	0.0168 (5)
C1	0.2546 (5)	0.6495 (3)	1.0088 (3)	0.0186 (6)
H1A	0.2662	0.6912	1.0567	0.022*
C2	0.2576 (5)	0.5354 (3)	1.0441 (3)	0.0203 (6)

H2	0.2704	0.4994	1.1159	0.024*
C3	0.2420 (5)	0.4737 (3)	0.9747 (3)	0.0205 (6)
H3	0.2447	0.3954	0.9977	0.025*
C4	0.2222 (4)	0.5296 (3)	0.8712 (3)	0.0164 (6)
C5	0.2212 (4)	0.6449 (2)	0.8388 (2)	0.0153 (6)
C6	0.2012 (4)	0.4900 (3)	0.7772 (3)	0.0181 (6)
C7	0.1980 (5)	0.5922 (3)	0.6874 (3)	0.0182 (6)
C8	0.1879 (5)	0.6097 (3)	0.5801 (3)	0.0212 (7)
H8	0.1825	0.5501	0.5504	0.025*
C9	0.1863 (5)	0.7187 (3)	0.5186 (3)	0.0212 (7)
Н9	0.1809	0.7349	0.4445	0.025*
C10	0.1924 (5)	0.8047 (3)	0.5642 (3)	0.0223 (7)
H10	0.1888	0.8781	0.5195	0.027*
C11	0.2057 (4)	0.6848 (3)	0.7249 (3)	0.0155 (6)
C12	0.3999 (4)	0.9788 (3)	0.7520 (3)	0.0181 (6)
H12	0.4178	0.9380	0.7009	0.022*
C13	0.4636 (4)	1.0882 (3)	0.7171 (3)	0.0180 (6)
H13	0.5212	1.1206	0.6436	0.022*
C14	0.4435 (4)	1.1511 (2)	0.7894 (3)	0.0176 (6)
H14	0.4858	1.2264	0.7675	0.021*
C15	0.3585 (4)	1.0977 (2)	0.8947 (3)	0.0154 (6)
C16	0.2951 (4)	0.9874 (2)	0.9225 (2)	0.0139 (6)
C17	0.3142 (4)	1.1372 (2)	0.9930 (3)	0.0165 (6)
C18	0.2124 (4)	1.0415 (2)	1.0813 (3)	0.0162 (6)
C19	0.1345 (4)	1.0290 (3)	1.1887 (3)	0.0181 (6)
H19	0.1383	1.0876	1.2200	0.022*
C20	0.0503 (4)	0.9262 (3)	1.2485 (3)	0.0199 (6)
H20	-0.0062	0.9133	1.3226	0.024*
C21	0.0490 (4)	0.8422 (3)	1.1996 (3)	0.0195 (6)
H21	-0.0094	0.7729	1.2426	0.023*
C22	0.2039 (4)	0.9522 (2)	1.0394 (2)	0.0143 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01648 (8)	0.01391 (8)	0.01188 (8)	0.00013 (5)	-0.00036 (5)	-0.00370 (5)
Cl1	0.0377 (5)	0.0222 (4)	0.0142 (4)	0.0028 (3)	-0.0047 (3)	-0.0066 (3)
Cl2	0.0343 (4)	0.0151 (4)	0.0193 (4)	-0.0012 (3)	-0.0052 (3)	-0.0038 (3)
C13	0.0262 (4)	0.0187 (4)	0.0144 (4)	-0.0011 (3)	-0.0020 (3)	-0.0061 (3)
Cl4	0.0333 (4)	0.0151 (4)	0.0194 (4)	0.0019 (3)	-0.0005 (3)	-0.0030 (3)
O1	0.0391 (14)	0.0147 (11)	0.0241 (13)	-0.0037 (10)	-0.0044 (11)	-0.0072 (10)
O2	0.0348 (13)	0.0135 (11)	0.0251 (13)	0.0004 (9)	-0.0077 (11)	-0.0074 (10)
N1	0.0197 (12)	0.0112 (12)	0.0171 (13)	0.0000 (9)	-0.0020 (10)	-0.0038 (10)
N2	0.0205 (13)	0.0146 (12)	0.0195 (14)	-0.0029 (10)	-0.0032 (11)	-0.0030 (10)
N3	0.0171 (12)	0.0149 (12)	0.0136 (12)	-0.0002 (9)	-0.0016 (10)	-0.0033 (10)
N4	0.0180 (12)	0.0155 (12)	0.0162 (13)	-0.0018 (9)	-0.0016 (10)	-0.0048 (10)
C1	0.0229 (15)	0.0171 (14)	0.0161 (15)	-0.0012 (11)	-0.0014 (12)	-0.0068 (12)
C2	0.0255 (16)	0.0161 (15)	0.0177 (16)	0.0011 (12)	-0.0038 (13)	-0.0031 (12)

supplementary materials

C3	0.0228 (16)	0.0151 (14)	0.0211 (16)	0.0004 (12)	-0.0026 (13)	-0.0024 (12)
C4	0.0178 (14)	0.0136 (14)	0.0189 (15)	-0.0004 (11)	-0.0024 (12)	-0.0071 (12)
C5	0.0146 (13)	0.0143 (14)	0.0164 (15)	-0.0007 (10)	0.0001 (11)	-0.0054 (12)
C6	0.0189 (14)	0.0171 (15)	0.0191 (15)	0.0002 (11)	-0.0012 (12)	-0.0081 (12)
C7	0.0190 (14)	0.0161 (14)	0.0199 (16)	0.0005 (11)	-0.0021 (12)	-0.0071 (12)
C8	0.0212 (15)	0.0241 (16)	0.0198 (16)	-0.0026 (12)	-0.0037 (13)	-0.0089 (13)
C9	0.0194 (15)	0.0265 (17)	0.0169 (16)	-0.0016 (12)	-0.0025 (12)	-0.0054 (13)
C10	0.0224 (16)	0.0218 (16)	0.0197 (17)	-0.0023 (12)	-0.0048 (13)	-0.0007 (13)
C11	0.0137 (13)	0.0137 (14)	0.0181 (15)	-0.0001 (10)	-0.0023 (11)	-0.0035 (12)
C12	0.0190 (14)	0.0188 (15)	0.0162 (15)	0.0008 (11)	-0.0023 (12)	-0.0056 (12)
C13	0.0184 (14)	0.0176 (14)	0.0141 (14)	-0.0006 (11)	-0.0007 (12)	-0.0002 (12)
C14	0.0169 (14)	0.0130 (13)	0.0214 (16)	-0.0009 (11)	-0.0040 (12)	-0.0024 (12)
C15	0.0156 (13)	0.0128 (13)	0.0177 (15)	0.0032 (10)	-0.0046 (12)	-0.0035 (12)
C16	0.0122 (13)	0.0133 (13)	0.0155 (14)	0.0014 (10)	-0.0027 (11)	-0.0032 (11)
C17	0.0178 (14)	0.0131 (13)	0.0190 (15)	0.0030 (11)	-0.0057 (12)	-0.0040 (12)
C18	0.0149 (13)	0.0157 (14)	0.0183 (15)	0.0011 (11)	-0.0043 (11)	-0.0049 (12)
C19	0.0193 (14)	0.0184 (14)	0.0193 (15)	0.0028 (11)	-0.0060 (12)	-0.0084 (12)
C20	0.0170 (14)	0.0270 (16)	0.0148 (15)	0.0024 (12)	-0.0009 (12)	-0.0064 (13)
C21	0.0181 (14)	0.0172 (14)	0.0206 (16)	-0.0011 (11)	-0.0021 (12)	-0.0025 (12)
C22	0.0120 (12)	0.0149 (13)	0.0165 (14)	0.0020 (10)	-0.0036 (11)	-0.0047 (11)

Geometric parameters (Å, °)

2.2720 (8)	С7—С8	1.389 (5)
2.2882 (8)	C7—C11	1.405 (4)
2.2864 (8)	C8—C9	1.386 (5)
2.2872 (8)	С8—Н8	0.9500
1.208 (4)	C9—C10	1.393 (5)
1.209 (4)	С9—Н9	0.9500
1.331 (4)	C10—H10	0.9500
1.355 (4)	C12—C13	1.385 (4)
0.89 (1)	C12—H12	0.9500
1.325 (4)	C13—C14	1.396 (4)
1.355 (4)	C13—H13	0.9500
1.326 (4)	C14—C15	1.381 (4)
1.354 (4)	C14—H14	0.9500
1.326 (4)	C15—C16	1.400 (4)
1.352 (4)	C15—C17	1.498 (4)
1.384 (4)	C16—C22	1.493 (4)
0.9500	C17—C18	1.500 (4)
1.387 (5)	C18—C19	1.382 (4)
0.9500	C18—C22	1.402 (4)
1.383 (5)	C19—C20	1.392 (4)
0.9500	C19—H19	0.9500
1.397 (4)	C20—C21	1.396 (4)
1.503 (4)	С20—Н20	0.9500
1.471 (4)	C21—H21	0.9500
1.486 (5)		
179.43 (3)	N2-C10-C9	123.9 (3)
	2.2720 (8) 2.2882 (8) 2.2864 (8) 2.2872 (8) 1.208 (4) 1.209 (4) 1.331 (4) 1.355 (4) 0.89 (1) 1.325 (4) 1.355 (4) 1.326 (4) 1.354 (4) 1.326 (4) 1.352 (4) 1.352 (4) 1.384 (4) 0.9500 1.387 (5) 0.9500 1.383 (5) 0.9500 1.397 (4) 1.503 (4) 1.471 (4) 1.486 (5) 179.43 (3)	2.2720 (8) $C7C8$ $2.2882 (8)$ $C7C11$ $2.2884 (8)$ $C8C9$ $2.2872 (8)$ $C8H8$ $1.208 (4)$ $C9C10$ $1.209 (4)$ $C9H9$ $1.331 (4)$ $C10H10$ $1.355 (4)$ $C12C13$ $0.89 (1)$ $C12H12$ $1.325 (4)$ $C13C14$ $1.355 (4)$ $C13C14$ $1.355 (4)$ $C13C14$ $1.325 (4)$ $C14C15$ $1.326 (4)$ $C14C15$ $1.352 (4)$ $C15C16$ $1.352 (4)$ $C15C17$ $1.384 (4)$ $C16C22$ 0.9500 $C17C18$ $1.387 (5)$ $C18C19$ 0.9500 $C19H19$ $1.397 (4)$ $C20C21$ $1.503 (4)$ $C20H20$ $1.471 (4)$ $C21H21$ $1.486 (5)$ $N2C10C9$

Cl1—Au1—Cl4	90.27 (3)	N2-C10-H10	118.1
Cl3—Au1—Cl4	89.73 (3)	С9—С10—Н10	118.1
Cl1—Au1—Cl2	89.47 (3)	N2—C11—C7	126.7 (3)
Cl3—Au1—Cl2	90.55 (3)	N2-C11-C5	125.6 (3)
Cl4—Au1—Cl2	179.30 (3)	C7—C11—C5	107.7 (3)
C5—N1—C1	120.1 (3)	N3—C12—C13	123.8 (3)
C5—N1—H1	122 (3)	N3—C12—H12	118.1
C1—N1—H1	118 (3)	C13—C12—H12	118.1
C11—N2—C10	114.0 (3)	C12—C13—C14	120.3 (3)
C16—N3—C12	115.2 (3)	С12—С13—Н13	119.8
C22—N4—C21	115.0 (3)	C14—C13—H13	119.8
N1—C1—C2	120.9 (3)	C15—C14—C13	116.1 (3)
N1—C1—H1A	119.6	C15—C14—H14	121.9
C2—C1—H1A	119.6	C13—C14—H14	121.9
C1—C2—C3	120.1 (3)	C14—C15—C16	119.8 (3)
C1—C2—H2	120.0	C14—C15—C17	131.3 (3)
С3—С2—Н2	120.0	C16—C15—C17	108.9 (3)
C4—C3—C2	118.0 (3)	N3—C16—C15	124.8 (3)
С4—С3—Н3	121.0	N3—C16—C22	126.9 (3)
С2—С3—Н3	121.0	C15—C16—C22	108.3 (3)
C3—C4—C5	120.0 (3)	O2—C17—C15	126.5 (3)
C3—C4—C6	132.0 (3)	O2—C17—C18	128.0 (3)
C5—C4—C6	107.9 (3)	C15—C17—C18	105.4 (2)
N1—C5—C4	121.0 (3)	C19—C18—C22	119.4 (3)
N1	129.2 (3)	C19—C18—C17	132.1 (3)
C4—C5—C11	109.8 (3)	C22—C18—C17	108.5 (3)
O1—C6—C7	128.9 (3)	C18—C19—C20	116.5 (3)
O1—C6—C4	126.0 (3)	C18—C19—H19	121.8
C7—C6—C4	105.1 (3)	С20—С19—Н19	121.8
C8—C7—C11	118.2 (3)	C19—C20—C21	120.0 (3)
C8—C7—C6	132.5 (3)	С19—С20—Н20	120.0
C11—C7—C6	109.4 (3)	C21—C20—H20	120.0
C9—C8—C7	116.6 (3)	N4—C21—C20	124.0 (3)
С9—С8—Н8	121.7	N4—C21—H21	118.0
С7—С8—Н8	121.7	C20-C21-H21	118.0
C8—C9—C10	120.7 (3)	N4—C22—C18	125.2 (3)
С8—С9—Н9	119.7	N4—C22—C16	126.0 (3)
С10—С9—Н9	119.7	C18—C22—C16	108.8 (3)
C5—N1—C1—C2	-0.8 (5)	C16—N3—C12—C13	-0.8 (5)
N1—C1—C2—C3	0.4 (5)	N3-C12-C13-C14	1.0 (5)
C1—C2—C3—C4	-0.4 (5)	C12-C13-C14-C15	0.1 (5)
C2—C3—C4—C5	0.9 (5)	C13-C14-C15-C16	-1.3 (4)
C2—C3—C4—C6	-179.7 (3)	C13-C14-C15-C17	179.7 (3)
C1—N1—C5—C4	1.2 (5)	C12—N3—C16—C15	-0.5 (4)
C1—N1—C5—C11	-177.8 (3)	C12—N3—C16—C22	179.1 (3)
C3—C4—C5—N1	-1.3 (5)	C14—C15—C16—N3	1.5 (5)
C6—C4—C5—N1	179.2 (3)	C17-C15-C16-N3	-179.3 (3)
C3—C4—C5—C11	177.9 (3)	C14—C15—C16—C22	-178.0 (3)
C6—C4—C5—C11	-1.6 (3)	C17—C15—C16—C22	1.2 (3)

supplementary materials

C3—C4—C6—O1	5.2 (6)	C14—C15—C17—O2	-5.5 (6)
C5—C4—C6—O1	-175.3 (3)	C16—C15—C17—O2	175.4 (3)
C3—C4—C6—C7	-176.8 (3)	C14—C15—C17—C18	177.2 (3)
C5—C4—C6—C7	2.8 (3)	C16-C15-C17-C18	-1.9 (3)
O1—C6—C7—C8	-4.5 (6)	O2-C17-C18-C19	3.9 (6)
C4—C6—C7—C8	177.6 (4)	C15—C17—C18—C19	-178.8 (3)
O1—C6—C7—C11	175.0 (3)	O2—C17—C18—C22	-175.3 (3)
C4—C6—C7—C11	-2.9 (3)	C15—C17—C18—C22	2.0 (3)
C11—C7—C8—C9	0.0 (5)	C22-C18-C19-C20	-0.3 (4)
C6—C7—C8—C9	179.4 (3)	C17—C18—C19—C20	-179.5 (3)
C7—C8—C9—C10	-0.7 (5)	C18—C19—C20—C21	0.4 (5)
C11—N2—C10—C9	-0.6 (5)	C22—N4—C21—C20	-0.4 (5)
C8—C9—C10—N2	1.0 (5)	C19—C20—C21—N4	-0.1 (5)
C10—N2—C11—C7	-0.2 (5)	C21—N4—C22—C18	0.5 (4)
C10—N2—C11—C5	178.5 (3)	C21—N4—C22—C16	-178.9 (3)
C8—C7—C11—N2	0.5 (5)	C19—C18—C22—N4	-0.1 (5)
C6—C7—C11—N2	-179.1 (3)	C17—C18—C22—N4	179.2 (3)
C8—C7—C11—C5	-178.4 (3)	C19-C18-C22-C16	179.3 (3)
C6—C7—C11—C5	2.0 (4)	C17—C18—C22—C16	-1.3 (3)
N1-C5-C11-N2	0.0 (5)	N3-C16-C22-N4	0.0 (5)
C4—C5—C11—N2	-179.1 (3)	C15-C16-C22-N4	179.5 (3)
N1—C5—C11—C7	178.9 (3)	N3-C16-C22-C18	-179.5 (3)
C4—C5—C11—C7	-0.2 (4)	C15-C16-C22-C18	0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1…N3	0.89 (1)	1.88 (1)	2.762 (4)	168 (4)

